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On the DeWitt metric
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Abstract. The DeWitt metric on the spaceof Riemannianmetricsof a compact
manifold naturally arises in a Hamiltonian descriptionof GeneralRelativity. We
provide a synopsisof the differential-geometricproperties of this metric. A
potentiallink to superspacetopologyis discussed.

1. NOTATIONS

Let M be a compactsmoothmanifold of dimensionn ~ 2, .~(M)the algebra

of real functionson M, ~(M) the spaceof vector fields on M, £/‘(M) thespaceof
symmetricbilinear forms on M, A1 the openconeof Riemannianmetrics of M

in ,9’(M) and ~ the group of diffeomorphismsof M which actson A1 via the

pull-backoperation.
For a given g E A1, let V denotethe Levi-Civita connection,R the Riemann

curvaturetensor,p (resp. ~) the Ricci curvature(resp.p actingon X(M)), r the

scalarcurvature,Pg the volume elementof g. For h E ~9’(M),g~(h)designates

the trace with respectto g. We shall not makeexplicit the musicalisomorphisms
betweenthe tangentbundle TM and the cotangentbundleT*M via g.
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There exists a family ~ of local scalarproductson A! dependingon a

real parametera. Identifying the tangent spaceof A! at g with ,9’(M), for
h, k E ,9”(M) onedefines

(1.1) (Ii, k)(°)=g
2(h ® k) + ag’(h)g1(k)

The correspondingglobal scalar product (., . = J~(.,~ is invariant

under the action of ~, positive definite for a ~ — 1 i’ll andnondegeneratefor

a ~.— 1/n. For the weight a = 0 it is the canonicalmetric, for a = — lit is the
DeWitt metric (we shall write symbolically DW insteadof — 1). The DeWitt

metric first arose in a Hamiltonian descriptionof GeneralRelativity [4]. The
termitself wascoinedin [7] and [14]. The correspondingglobal normsare written
as 11(11). Theseare true norms only for a> — 1/n butweshallwritel~h 11(a) =

= (Ii, h)(a) foranya.Weshallalso needthe triple product(h, k, p) = g3(h ® k ® p)

of threesymmetricbilinear forms.Thisis unambiguouslydefined.

Let d stand for the exterior derivative of the De Rham complex of M,

= 8(g) for its formal adjointwith respectto g, 6 for the differential operator
from x(M) to ,9’~’(M) which to a vector field ~associates6’~= ~ Leg. For a ~

— 1/n; 6~°~= 6(0) — a dg 1( . ) is the formal adjoint of with respectto

C,.~ Let Hess:~ (M) -÷5” (M) denotethe Hessianwhich to f E ~ (M) asso-
ciates Hessf = V df. The LaplacianL~actingon .~(M)is the oppositeof thetrace

of the Hessian.

2. THE DeWITT METRIC AS A CRITICAL METRIC ON A!

We may rewrite the fundamentalidentities of Riemannian geometry as

follows:

= — (a + — )dr (Bianchiidentity)

(2.1)

• 6~,°)6;= (a + 1) db + — 6d—~ (Ricciidentity)

The differential operator 5~)6’ on x(M) is self-adjoint if a ~ — 1/n, elliptic if
a > — 1 and hyperbolic if a < — 1. The parabolic casecorrespondsto the

DeWitt metric. For a > — 1, the Ricci identity in (2.1) comparestwo Lapla-
cians, ~ = 6~11)6;and (a + 1) d6 +-~.6d, i.e., it is a Weitzenböckformula.

From an extrinsic point of view the DeWitt metric is distinguished by the

following property [4]. If (M, g) is a Riemannianhypersurfaceof a Lorentzian
manifold with secondfundamentalform K, then one hasSL = SR + II KII~DW)

where 5L (resp. 5R) is the total Lorentzian(resp. Riemannian)scalar curvature.
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The geodesicsof the DeWitt: metric were computed in the seminal paper

[4] whereasthe geodesicsof the canonicalmetric have beendeterminedin [5]

and [11].

3. A DECOMPOSITIONTHEOREM

In [2] Berger and Ebin show that for a = 0 the tangentspaceof A! at g

splits as the orthogonal sum with respect to the global inner product C, .

(3.1) ,f/’(M)=Im bg*DKer6~~).

In fact, the sameresult holds for any coupling constanta * — 1/n. The image

of contains the fundamentalor vertical vector fields which are tangentto

the orbit of ~ at g. The kernel of 6~°)consistsof a-horizontal vectorswhich

are tangentto a transversalsliceat g [5].

PROPOSiTION 32. For a * — 1/n, themost generala-horizontal vector field on

A! whose expressioncontains derivativesof order at most 2 in theRiemannian

metric is

2ka+1
g ~-* c0g + ) c~, Ric~’~— Scal~’~}. g

g 2k(1+an) g

where Ricg~}E ,9’(M) is the generalized Ricci curvature,

(Ric~}).= 6i”~2k R R. . ‘~‘~ ...R. . 12k—l’2k, I
g ~‘ /12/2k ~l2~ ‘3’4 2k—1’2k L2

Scaljk} = g_1(Ric~k}) is the generalized sea/ar curvature and the c1 for 0 ~ / ,~

~ [~] are constants.

Proof For a = 0 the result is due to Lovelock [131. The generalizationis
achieved by a simple adjustmentof constantstaking into account thegenera-
lized Bianchi identity [13]

— dScal{k}.
g 2k g

4. KILLING FIELDSON .~t

The manifoldA’ being an open conein ,9’(M), the deformationsg F-~g + th

with g E A!, h E ,!/‘(M) are flows on A! with It small enough.Thus the Lie



496 OSMO PEKONEN

derivative £~on A! can be computed in terms of directional derivatives. A

vector field P on A! is a Killing field for the global scalarproduct (., . )(a) if
and only if~’~(., )(11) = 0.

PROPOSITION 4.1. Supposean * — 2. Then the vector spaceof Killing fields

for (A!, C, - )~) consistsof fundamentalvectorfields except in dimension 4
where the tautological field g —~ g is also a generator (even if a = — 1/2).

Proof Let H, K, P be genericvectorfields on A! with pointwisevaluesH(g) = Ii,

K(g) = k, P(g) = p. If P is to be a Killing field with respect to a coupling
constantaonefinds by inspectionthat any H andK shouldsatisfy

/ I

fM~ 2(h, k, p) + — (h, k)~°~g’~p)

(4.2) —a(h, p)~°~g’(k)—a(k, p)(°)g’(h)

+ — g_1(h)g_1(k)g_1~p))vg = 0

at any point g E A’. Choosein particular h = k = g. Then (4.2) reducesto

(4.3) ~2 + (1 _2a)n_2)f g_’~)Pg = 0.

Supposefor the momentthat f~g’(p)vg* 0. Thenthe secondorder equation

remainingfrom (4.3) admits the roots n = 4 and n = — 1/a (if a * 0). The
latter onecorrespondsto the degeneratescalarproduct.

In thecasen = 4, the specialchoiceh = g, k = p in (4.2) impliesf =4IIPII~

for any coupling constanta * — 1/2. Hence,P mustbe colinearwith thetauto-

logical field. On the other hand,by inspectionone seesthat if P is the tautolo-
gical field then for n = 4 (4.2) is identically satisfied for any a. Moreover,the

tautologicalfield doesnot satisfy(4.2) for any a if n * 4.
In the degeneratecasea = — 1/n, the choice h = g, k = p in (4.2) yields

f (gl~))2p = n I~
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whenceP mustbe colinearwith the tautologicalfield andhencen = 4.

Next, study the casewhere f~g1(p)vg= 0. This includes the fundamental
fields asby Green’stheorem

(4.4) f g~(6~)= — f 6~=0

for any ~ ~ x(M). The fundamentalfields are Killing fields for anya as C, .

is ~ -invariant. The tautological field is not a fundamentalfield becauseif it

was, wewould find f~g’~) = n volume(M) = 0 by (4.4).
If p E 5”(M) satisfiesf~g’(p)vg = 0 thenit canbedecomposedasp = +

+ j~with ~ E x(M) and fl trace-free.Westill needto checkwhetherthe trace-free
vector fields on A! provide more generatorsfor the vector spaceof Killing
fields. In general,this is not the caseas for the choiceh = g, k = p = ~ (4.2)
reducesto

(an +2)Ij~~I~)=0.

However, in the case an = — 2 we are not able to conclude.This leaves

open the problem of determining the DeWitt Killing fields on the spaceof
Riemannian metrics on a compact Riemannsurface. On the spaceA’_

1 of
Poincarémetrics on a compactRiemannsurfaceof genus>1 thereis no DeWitt
metric as deformationsof Poincarémetrics are necessarilytrace-free [8] and

the twisting term in (1.1) drops away. The quotient spaceof A! 1 by the
identity componentof ~, or the classicalTeichmüllerspace,is a finite-dimen-

sional manifold [8]. The canonicalmetric on A’, or as well on A’_1, projects
down to the TeichmUller space to yield its classicalWeil-Peterssonmetric up
to a constantfactor [9]. Someresults on the Killing fields of this metric can

befoundin[15]. •

5. A FORMULA ON THE DeWHT HORIZONTALS

Let w be an I-form on A! with valuesin any vectorspaceE. One definesthe
exterior derivativedi,, on A! by settingfor arbitraryvectorfieldsH0, ..., H1 onA!

d~w(H0,...,H1)=~(—I)~~(w(H0,...,ft1,...,H1))

+ ~(— l)’~’w([H~,H1],H0, ...,J~, ...,fi, ...,H1)
i<i
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where [H
1,~] = ~ {H~(g+ tH1(g))—H1(g+ tH~(g))}.

The scalarcurvature r is a 0-form on A! with values in S~(M)whereasthe

Ricci curvaturep is avector field on A!. The vectorfieldsg ~-+ p + ~3r- g where~3
is a real parametergive rise to a family of 1-formsp + f3r - g(a) on A! with va-

lues in .~(M) which are the dual 1-forms of p + hr - g with respectto each

local scalarproduct(., ~

In this setting the classicalfirst variation formula of the scalarcurvature[3]

takesthefollowing form

(5.1) d~r=—~°~+6o 6~W)

PROPOSITION52. On theDeWitt horizontals

(DW)
(5.3) c~, p — r ~g = q~p5(0) = 6o q8

n—l

Proof The first equality in (5.3) is trivial by inspection.Applyingd~,to both

sidesof(5.l), onefinds

d~~~(°)= d~(8 0 8(DW))

Supposethat two arbitrary tangentvectorsh, k E TgA! areextendedto constant

vector fields in a neighbourhoodof g. Now both 8 = 6(g) and 6(DW) are linear
differential operatorson fixed spacesfor a fixed g so the Leibniz rule applies

ancfwe may compute

d~(6 0 6(DW))(/~ k)

d d
= — (6(g+t/i)o 6~)(kY (6(g+tk)o 6~~)(h)

r=0 t=0

= — 6(g + th) 0 8(~)(k) — — 6(g + tk) 0

dt It=o g dt

d d
+ 8(g) a — 6~(k) — 6(g) 0

~lr=o r=o

In the kernel of 6(DW) the first two terms of the last expressionabovevanish
andthe sum of the remainingonesequals6 ~ 8(DW)~This provesthe second
equality in (5.3).

One might conjecturethat the secondequationof (5.3) can be generalized
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for other coupling constantsa on the right hand side if somesuitable counter

termsare addedto the 1-form ~(0)~ In fact, this only worksfor a= — ~-. Besides
the DeWitt metric, this particular choice of the coupling constantalso has

someinterestbut we preferto postponeits discussionto anappendix.

6. PERSPECTIVES

In this section we commenton Proposition 5.2 which we view as the main
result of this paper. The action of ~ on A’ is not free in general.However,

the singularitiesin the <<superspace>>A’/~ can be unfoldedin severalways [6].

For instance,it is enoughto reduce~ to the subgroup~‘ of thediffeomorphisms
that <<strongly fix a point>>, i.e., which fix a basepoint of M anda frameat it.
The associatedfibration over A’/~’ is a principal fibre bundlewhich may not

admita globalgauge[12].
• The decomposition(3.1) is easily seento be equivariantwith respectto the
action of ~ in the sensethat Ker Ø*6~~)= q5* Ker 6~°~for q5 E ~. Hence,the
horizontal distributionsg ~-+ Ker 5~~)give a family of connectionsof the bundle
A’ -+ A’/~’. The associatedconnection I-forms formally read (8~)6;)— 1 6~°~-

For a ~ 0, the kernel of the Laplacian~a) = 6~°)6;consistsof theinfinitesimal

isometriesof (M, g). In the absenceof these,the Green’soperator(~(a))_l does

makesense.The associatedcurvature2-form on the a-horizontalsformally reads
d~((,~~))16~°~).

We want to point out the tantalizingresemblancethat the term d~
6(DW) of

(5.3) bearsto the ill-defined curvature2-form coming from the DeWitt metric.

On the other hand,we may view the divergence6 (up to a constantfactor) as
the <<infinite-dimensionaltrace>> on x(M). Indeed,the volume elementPg is the

good infinite-dimensional analogue of the finite-dimensional determinantand
the well-known formula £~Pg = — (ö~)Pg should be viewed as the infinite-
dimensionalversion of the usual derivationrule of the determinant.Proposition
5.2 thus might reflect the existenceof a transgressionformulafor the divergence

of the suitablyregularizedcurvature(an <<infinite-dimensionalfirst Chernclass>>)

of the bundle A!—* A’/~’. Analogousdevelopmentsappearin recentliterature
[1], [10] but we have not been able to relate them in a rigorous way with
formula (5.3).

APPENDIX: A TRANSGRESSIONFORMULA FOR a =

Let w denotethe 1-form on A! with values in ~(M) which to h E SP(M)

associates
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(Al) Wg(h)= (p, h)~
0~— ~-

Thenthe following generalizesthe secondequalityof (5.3):

PROPOSITION. In thekernelof 61/2), thefollowing holds

(A2) w = 6o c/~6~_1/2).

The discussionon the meaning of formula (5.3) given in section 6 applies

verbatim to (A2) also. In particular, exactly the same difficulties as before
arise with the ill-defined Green’soperator(6~”2)o’y’ . Thus the transgression

formula (A2) is no better than (5.3) but we find it worthwhile to put it on
recordas formulasof this type are certainlyhardto comeby.

We now sketch the proof of (A2). First of all, the readercan check by a
tedious but straightforward computation,say, in normal coordinatesthat for

h, k E Ker 5~)and for any aonehas on the onehand

1 1
6 o d

1~,6(a)(h, k) = — (L~h, k)~°
1— — (~k,h)~°~

g 2 2
(A3)

1 1
+ — (HessTr ii, k)~°~— — (HessTr k, h)~°~

2 2

andon the otherhand

1 1
di,, pt0~(h,k) = — (

1~h,k)~°~— — (i~k,h)(°)

(A4)

— (a + —) ((HessTr h, k)~°
1— (HessTr k, h)~°~).

2

Comparing (A3) and (A4) with a = — 1 gives anotherproof of the second

equality of (5.3).

Moreover,for ~ = —~, (A4) simplifies to

1 1
(AS) ~ ~iO)(/~ k) = — (L~h,k)~°)— — (Llk, h)~°~.

On the otherhand,by a variationformula given in [3] onehas

d
(A6) ~ Ag~f (Hessf,/~)(0)—g(df,o~’/2)h).
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For h E Ker 6~h/’2), the secondterm on the right hand side of (A6) drops

away. This inspires us to seek the suitable correctionterm to be addedto ~(0)

in the form c L~(g~(.))for some constantc. Indeed,onereadily computesthat
for Ii, k E Ker 6~1/2)

(A7) d~,(~(g’(.)))(h, k) = (HessTr k, h)~°~— (HessTr h, k)~°~.

Hence,addingc = —-~- times the right hand side termsof (A7) to thoseof(A5)

one exactlyrecoversthe right handside termsof (A3). This proves(A2).

Let us finally point out that by (2.1) the Ricci curvature vector field is
horizontalfora = — 1/2.
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